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Abstract

A total concentration fixed-grid approach analogous to the enthalpy method for melting/solidification is presented in this article to
model two-dimensional diffusion-controlled wet chemical etching. A total concentration, which is the sum of the unreacted and the
reacted concentrations is defined. Using this newly defined total concentration, the governing equation also contains the interface con-
dition. For demonstration purposes, the finite-volume method is used to solve the resulting set of governing equation, initial condition
and boundary conditions. The results obtained using the total concentration method are compared with solutions from the asymptotic
solution and the finite element method. The effects of mask thickness and initial concentration on evolution of etchfront during etching
are examined. High initial etchant concentration leads to faster etching and hence the speed of etchfront. It is seen that when mask thick-
ness increases, the bulging effect near the mask corner is less pronounced.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Wet chemical etching (WCE) is a technique which
removes material selectively from the surface of a solid
body commonly referred to as the substrate. This is
achieved by the application of fluids called etchant to give
a specific pattern on the surface of the substrate. WCE pro-
cess is used in the manufacturing of shadow mask for
color-television tubes [1], IC devices in microelectronics
industries [2], MEMS devices such as hinges [3] and pres-
sure sensors [4] etc.

The asymptotic solution [5,6], the variational inequality
approach [7,8], the moving-grid (MG) approach [7,9,11–
14], the level-set method [15–17], and the fixed-grid (FG)
method [18,19] have been used to model WCE. Based on
the rate of reaction, two possible cases namely—the diffu-
sion-controlled [5–12,18,19] and the reaction-controlled
[7,11–14,19] etching are examined by various researchers.
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These two cases are studied in the modeling of one-dimen-
sional [9,13,18,19] and two-dimensional [5–12,15,17] WCE
using the above analytical and numerical approaches. The
forced and natural convection effects on etching process are
studied by Shin and Economou [11,12].

Two-dimensional WCE is modeled by Kuiken [5,6]
using asymptotic solution. The asymptotic solution is valid
for diffusion-controlled etching using a dilute etchant. Kui-
ken et al. [9] presented the exact solution for the diffusion-
controlled WCE in a one-dimensional geometry. The
analytical treatment is then extended to a two-dimensional
diffusion-controlled WCE based on perturbation principle.
The substrate is partly protected by a semi-infinite mask
(infinitely thin) making it a two-dimensional etching prob-
lem. The analytical asymptotic solution is verified with the
experimental results for etching GaAs in HCl/H2O2/H2O
etchant solution [10].

The MG method has been used to model WCE process.
In the MG method, since the computational domain is lim-
ited to the space occupied by the etchant, it continuously
expands with time. The etchant concentration is solved
using appropriate boundary conditions and a specified
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Nomenclature

a coefficient of the discretization equation
c unreacted etchant concentration
cR reacted etchant concentration
cR,max maximum possible value of the reacted concen-

tration
cT total concentration
D diffusion coefficient of etchant
MSub molecular weight of the substrate
m stoichiometric reaction parameter
t time
t* non-dimensional time
vn̂ normal speed of the etchant–substrate interface
x, y coordinate directions
X, Y non-dimensional coordinate directions

Greek symbols

a under-relaxation factor
b non-dimensional etching parameter

$ vector differential operator
Dt time step
qSub density of the substrate

Subscripts

0 initial
P control volume P

Sub the substrate
Et the etchant
T total

Superscripts

m iteration number
o previous time step
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initial condition. Using the interface condition at the
etchant–substrate interface, the etchfront velocities are
then calculated to find the new position of the interface.
The process is repeated until the desired etch depth has
been achieved or when the specified etching time has been
reached. As the computational domain expands with time,
the computation mesh has to be regenerated at every time
step. Due to the movement of the mesh, a diffusion prob-
lem becomes a convective–diffusion problem. The mesh
velocities are accounted for in the governing equation in
terms of an extra convective term [7,14]. Further, an
unstructured mesh system or a body-fitted grid system is
needed to model multidimensional WCE.

The numerical models of two-dimensional WCE are pre-
sented by Vuik and Cuvelier [7]. The finite element method
(FEM) is used for discretization of the problem in the space
variables and a finite difference method is used for dis-
cretizing the time variable. The MG method and the
variational inequality approach are used to track the
etchant–substrate interface. The mesh velocities in the
MG method due to the movements of the computational
grids are modeled. Bruch et al. [8] developed a highly effi-
cient parallel algorithm based on the variational inequality
approach for the same etching problem. Shin and Econo-
mou [11] studied the effect of etchant flow field (forced con-
vection) on the shape evolution of etching cavities. The
FEM was used to solve for the etchant velocity distribution
and the etchant concentration distribution in the etched
cavities. The MG method was used to track the etchant–
substrate interface. The extra convective term due to grid
velocities was neglected. The FEM model is extended to
compare the effects of forced and natural convection on
the shape evolution of etching cavities [12]. Li et al. [13]
presented a one-dimensional moving boundary numerical
scheme to predict the motion of the etchant–substrate
interface during etching of phosphosilicate-glass (PSG)
with hydrofluoric acid (HF). In the model a one-dimen-
sional radial diffusion equation is solved using fully implicit
scheme. Kaneko et al. [14] used a MG approach to model a
two-dimensional reaction-controlled WCE of an alumin-
ium substrate using the FEM. A first order reaction kinetic
was assumed. The extra convective term due to grid
velocities was also taken into account. Adalsteinsson and
Sethian [15,16] developed a level-set formulation to
simulate deposition, etching, and lithography in integrated
circuit fabrication using two-dimensional and three-
dimensional models. La Magna et al. [17] used a level-set
method for a moving front to simulate two-dimensional
profile evolution during the reaction-controlled WCE
process.

Chai and co-workers [18,19] presented a fixed-grid
approach based on the total concentration of etchant to
model WCE process. This method is analogous to the
enthalpy method used in the modeling of melting/solidifi-
cation process [20–29]. A total concentration, which is
the sum of the unreacted etchant concentration and the
reacted etchant concentration is defined. The governing
equation based on the total concentration includes the
interface condition. Hence there is no necessity to compute
the etchfront explicitly unlike the MG approaches. In this
formulation, the reacted concentration of the etchant is a
measure of the etchfront profile during the etching process.
Unlike the MG method, the etchfront is found implicitly
with the total concentration method. Since the grids are
fixed, there is no grid velocity. Hence a diffusion problem
always remains a diffusion problem. Cartesian grid can
be used to capture the complicated etchfront evolution in
multidimensional etching. The model has been tested for
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one-dimensional diffusion-controlled [18] and reaction-
controlled [19] WCE.

In this article, the fixed-grid (FG) method is extended to
model two-dimensional diffusion-controlled WCE. The
effect of mask thickness on mask undercutting is examined.
The effect of initial etchant concentration on etch profile
evolution is also examined.

The remainder of this article is divided into six sections.
In the next section, a two-dimensional WCE problem, the
governing equation, the interface condition and the bound-
ary conditions are described. Various ingredients of the
proposed FG method are then discussed. A brief descrip-
tion of the numerical method used in this article is given.
The overall solution procedure is then summarized. Discus-
sions of the results obtained using the proposed FG
method is presented. Some concluding remarks are then
given.

2. Problem description and governing equations

The schematic and computational domain for the two-
dimensional problem considered is shown in Fig. 1. A gap
of 2a is to be etched in a substrate (Fig. 1a). For demonstra-
tion purposes, the width of the mask on both sides of the
gap is assumed to be large enough so that the concentration
of etchant far away from the gap will remain unaltered at
the initial concentration. The initial concentration of the
etchant at t = 0 is c0. At t > 0, the reaction between the etch-
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Fig. 1. Schematic of the two-dimensional etching problem: (a) a full
schematic, (b) the computational domain.
ant and the substrate at the etchant–substrate interface
results in the reduction of the concentration of etchant adja-
cent to the etchant–substrate interface and the depletion of
the substrate. The concentration of etchant on the bound-
aries far away from the gap is kept at the initial concentra-
tion, i.e. c = c0. The etching is assumed diffusion-controlled
where reaction rate is infinitely fast. The origin of the coor-
dinate system is set to the etchant–substrate interface at the
center of the gap. Since the problem is symmetrical about
the origin, only half of the domain is considered as shown
in Fig. 1b. The governing equation, the interface condition
and the boundary conditions are presented next.

2.1. Governing equation

For a stationary etchant solution, the etchant concentra-
tion within the etchant domain is governed by the mass dif-
fusion equation given by

oc
ot

¼ o

ox
D
oc
ox

� �
þ o

oy
D
oc
oy

� �
in XðtÞ ð1aÞ

The initial and boundary conditions are

Initial condition at t = 0

c ¼ c0 in XðtÞ ð1bÞ

Boundary conditions for t > 0

oc
ox

¼ 0 x ¼ 0 ð1cÞ

c ¼ c0 y ¼ hþ l3 ð1dÞ
c ¼ c0 x ¼ aþ l1; h 6 y 6 hþ l3 ð1eÞ

Jy ¼ �D
oc
oy

¼ 0 y ¼ h; a 6 x 6 aþ l1 and

y ¼ 0; a 6 x 6 aþ x0ðtÞ ð1fÞ

Jx ¼ �D
oc
ox

¼ 0 x ¼ a; 0 6 y 6 h ð1gÞ

c ¼ 0 in the substrate and etchant–substrate interface

ð1hÞ

Interface condition for t > 0 on f(t)

~v ¼ �DMSub

mqSub

rc ð1iÞ

where~v is the velocity of the etchant–substrate interface, D
is the diffusion coefficient of etchant, MSub is the molecular
weight of the substrate, qSub is the density of the substrate
and m is the stoichiometric reaction parameter of the
etchant–substrate reaction. The normal speed of the
etchant–substrate interface vn̂ is obtained by dotting both
sides of Eq. (1i) with the unit vector n̂ normal to the inter-
face which points towards the substrate region. This can be
written as

~v � n̂ ¼ �DMSub

mqSub

rc � n̂ ) vn̂ ¼ �DMSub

mqSub

oc
on̂

ð1jÞ
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Fig. 2. A control volume containing the etchant–substrate interface.
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3. The total concentration method

In this article the total concentration of the etchant is
defined as

cT � cþ cR ð2Þ
where cT is the total concentration, c is the unreacted
etchant concentration and cR is the reacted etchant con-
centration, respectively. Physically, cR is the etchant con-
centration consumed in the reaction process. As such it is
constant except at the etchant–substrate interface. This is
used to capture the etchfront implicitly. The value of cR
changes from 0 to its maximum possible value of cR,max

in a control volume where etching is taking place. The max-
imum possible value of the reacted concentration termed
cR,max, is the amount of etchant required per unit volume
of substrate to dissolve the substrate during reaction. In
a unit volume, there are qSub/MSub moles of substrate.
The reaction between the etchant and the substrate is given
as

S þ mE ! qP ð3Þ

where S is the substrate, E is the etchant and P is the prod-
uct respectively. From Eq. (3) it is seen that the amount of
etchant needed to dissolve a unit volume of substrate is
mqSub/MSub. As cR,max is the amount of etchant required
per unit volume of substrate to dissolve the substrate dur-
ing reaction, it can be written as

cR;max ¼
mqSub

MSub

ð4Þ

The governing equation based on the total concentration is
given by
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Using Eq. (2), Eq. (5) can be written as
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ð6Þ

This equation is valid in both the etchant and the substrate
regions. The interface condition given by Eq. (1j) is con-
tained in Eq. (6) implicitly. This is shown next.

3.1. Interface condition

The integral form of the governing equation (Eq. (5))
based on the total concentration is given asZ
A
rc � n̂dA ¼ d

dt

Z
V
cT dV ð7Þ

where A is the surface area and n̂ is outward normal on the
surface A. Consider an elementary control volume V

(which contains the interface) as shown in Fig. 2 at two
time intervals. At t + Dt, DV volume of the substrate is
etched away from the elementary control volume V. At
time t, the interfacial surface R divides the control volume
V into a etchant portion VEt and a substrate portion VSub

and divides the surface area A of V into two parts namely,
AEt and ASub. After a small increment in time Dt, the inter-
face occupies a new position R 0 and during this time DV
volume of substrate has been etched away. Now the inte-
gral on the right hand side of Eq. (7) is examined at time
t and t + Dt. At time t,Z
V
ctT dV ¼

Z
V Et

ctT
� �

Et
dV þ

Z
V Sub�DV

ctT
� �

Sub
dV

þ
Z
DV

ctT
� �

Sub
dV ð8Þ

where the subscripts Et and Sub represent the etchant and
the substrate respectively. At time t + Dt,Z
V
ctþDt
T dV ¼

Z
V Et

ctþDt
T

� �
Et
dV þ

Z
V Sub�DV

ctþDt
T

� �
Sub

dV

þ
Z
DV

ctþDt
T

� �
Et
dV ð9Þ

Subtracting Eq. (8) from Eq. (9), givesZ
V

ctþDt
T � ctT

� �
dV ¼

Z
V Et

ctþDt
T � ctT

� �
Et
dV

þ
Z
V Sub�DV

ctþDt
T � ctT

� �
Sub

dV

þ
Z
DV

ctþDt
T

� �
Et
� ctT
� �

Sub

h i
dV ð10Þ

Dividing both sides of Eq. (10) by Dt, and taking limits as
Dt approaches zero. It should be noted that as Dt! 0,
(VSub � DV) ! VSub. Hence Eq. (10) reduces to

d

dt

Z
V
cT dV ¼ d

dt

Z
V Et

ðcTÞEt dV þ d

dt

Z
V Sub

ðcTÞSub dV

þ lim
Dt!0

Z
DV

ctþDt
T

� �
Et
� ctT
� �

Sub

h i
Dt

dV ð11Þ

Using Eq. (7), the integrals over VEt and VSub can be re-
placed as



Fig. 3. Control volumes P1, P2, P3 undergoing etching.
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d

dt

Z
V
cT dV ¼

Z
AEtþR

ðrcÞEt � n̂dAþ
Z
ASubþR

ðrcÞSub � n̂dA

þ lim
Dt!0

Z
DV

ctþDt
T

� �
Et
� ctT
� �

Sub

h i
Dt

dV ð12Þ

Now considering the last term of Eq. (12), at time t the
interface is occupied by the substrate. As the interface is
occupied by the substrate, the reacted concentration is
zero. Therefore,

ctT
� �

Sub
¼ ct þ ctR ¼ ct ð13Þ

At time t + Dt, the total concentration is

ctþDt
T

� �
Et
¼ ctþDt þ ctþDt

R ð14Þ

As Dt ! 0, the unreacted etchant concentration ct+Dt ! ct

and the reacted concentration ctþDt
R ! cR;max. Again as

Dt ! 0, the ratio dV/Dt approaches vn̂ dR, where vn̂ is the
local normal speed of the interfacial surface element dR to-
wards the substrate region. Also, the space that is enclosed
by DV shrinks to the surface R, so that the region of inte-
gration becomes R. If n̂ represents the local outward nor-
mal to R towards the substrate region, then for a portion
of the integrals over R, n̂ ¼ n̂ and n̂ ¼ �n̂ for the etchant
and the substrate side respectively. As a result, Eq. (12) re-
duces to

d

dt

Z
V
cT dV ¼

Z
A
rc � n̂dAþ

Z
R

oc
on̂

� �
Et

� oc
on̂

� �
Sub

� �
dR

þ
Z
R
cR;maxvn̂ dR ð15Þ

Using Eq. (7), Eq. (15) reduces toZ
R

oc
on̂

� �
Et

� oc
on̂

� �
Sub

þ cR;maxvn̂

� �
dR ¼ 0

) oc
on̂

� �
Et

� oc
on̂

� �
Sub

þ cR;maxvn̂ ¼ 0 ð16Þ

In the substrate, the etchant concentration is zero. As a
result, the second term of Eq. (16) will be zero. Hence
Eq. (16) reduces to

oc
on̂

¼ �cR;maxvn̂ ð17Þ

Substituting cR,max from Eq. (4) in the above equation and
rearranging results in

vn̂ ¼ �DMSub

mqSub

oc
on̂

Above relation is the interface condition given in Eq. (1j).
A procedure to update the reacted concentration (cR) is
needed to complete the formulation. This is discussed next.

3.2. Procedure to update cR

A procedure to calculate the reacted etchant concentra-
tion cR is presented in this section. As the reacted concen-
tration is constant away from the etchant–substrate
interface, Eq. (6) reduces to the original governing equa-
tion (Eq. (1a)) except at the etchant–substrate interface.
At the etchant–substrate interface, the reacted etchant con-
centration is a measure of the amount of substrate being
etched. In the proposed FG method, the control volumes
where etching is taking place (see Fig. 3) are identified
and are called the etching-control-volume (ECV). The
ECVs are the substrate control volumes adjacent to the
etchant control volumes. In an ECV, cR changes from 0
to its maximum possible value of cR,max. A procedure to
update cR in the ECV is described in this section. The finite
volume discretization equation (using the fully implicit
scheme) of Eq. (6) for an ECV (control volume P) is given
as

aPcmP ¼
X

anbcmnb þ aoP c
o
P � ðcmR;P � coR;P Þ

DV P

Dt
ð18Þ

where m is the mth iteration of the current time step, o is
the previous time step, P is the control volume P, nb is
the neighboring control volumes, a is the coefficients of
the discretization equation, DV is the volume of a control
volume and Dt is the time step respectively. Eq. (18) is valid
for all control volumes. However, as cR is constant in the
etchant and substrate, the last term on the right side of
Eq. (18) is zero except in the ECV. At the (m + 1)th itera-
tion, Eq. (18) can be written as

aPcmþ1
P ¼

X
anbcmþ1

nb þ aoP c
o
P � ðcmþ1

R;P � coR;P Þ
DV P

Dt
ð19Þ

Subtracting Eq. (19) from Eq. (18) and rearranging, gives

cmþ1
R;P ¼ cmR;P þ

Dt
DV P

½aP ðcmP � cmþ1
P Þ þ

X
anbðcmþ1

nb � cmnbÞ�

ð20Þ

When the solution converges, the last term of Eq. (20) will
be zero. However, during the initial iteration process, it is
most likely a non-zero term. Realizing that it is zero upon
convergence, this term can be ignored from the calculation
and Eq. (20) becomes
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cmþ1
R;P ¼ cmR;P þ aaP

Dt
DV P

ðcmP � cmþ1
P Þ ð21Þ

where a is an under-relaxation factor. For a diffusion-con-
trolled reaction, the reaction rate at the interface is infi-
nitely fast which makes the concentration at the interface
zero. For diffusion-controlled reaction, FG procedure
ensures that cmþ1

P ¼ 0 and the excess concentration is used
to update the reacted concentration. With cmþ1

P ¼ 0, Eq.
(21) becomes

cmþ1
R;P ¼ cmR;P þ aaP

Dt
DV P

cmP ð22Þ

Within the control volume where etching is taking place,
the reacted concentration is updated using Eq. (22). Etch-
ing for a given control volume completed, when cmþ1

R;P

reaches cR,max.

4. Numerical method

In this article, the finite-volume method (FVM) of Pat-
ankar [30] is used to solve the concentration equation.
Since a detailed discussion of the FVM is available in Pat-
ankar [30], only a brief description of the major features of
the FVM used is given here. In the FVM, the domain is
divided into a number of control volumes such that there
is one control volume surrounding each grid point. The
grid point is located in the center of a control volume.
The governing equation is integrated over each control vol-
ume to derive an algebraic equation containing the grid
point values of the dependent variable. The discretization
equation then expresses the conservation principle for a
finite control volume just as the partial differential equation
expresses it for an infinitesimal control volume. The result-
ing solution implies that the integral conservation of mass
is exactly satisfied for any control volume and of course,
for the whole domain. The resulting algebraic equations
are solved using a line-by-line Tri-Diagonal Matrix Algo-
rithm. In the present study, a solution is deemed converged
when the maximum change in the concentration and the
maximum change in the reacted concentration between
two successive iterations are less than 10�11.

5. Overall solution procedure

The overall solution procedure for the proposed total
concentration method can be summarized as follows:

1. Specify the etchant domain, the substrate domain and
the mask region. Ensure that the etchant–substrate
interface lies on the interface between two control
volumes.

2. Set the initial etchant concentration as c0 in the etch-
ant domain and zero in the substrate domain includ-
ing the mask region.

3. Initially set cR to 0 in the substrate domain including
the mask region and to cR,max in the etchant domain
respectively.
4. Advance the time step to t + Dt.
5. Identify the etching control volumes (ECVs). These

are the substrate control volumes with adjacent etch-
ant control volumes.

6. Use the ‘‘internal’’ boundary condition treatment of
Patankar [30] (by setting SP to a big number) to set
the unreacted etchant concentration in the mask
and substrate regions to zero.

7. Set SP in the ECV to zero.
8. Solve Eq. (6) for the unreacted concentration.
9. Update the reacted concentration in the ECVs using

Eq. (22).
10. Check for convergence.

(a) If the solution has converged, then check if the
required number of time steps has been reached.
If yes, stop. If not, repeat (4)–(10).

(b) If the solution has not converged, then check the
calculated reacted concentration.
• If cR < cR,max, repeat (8)–(10).
• If, cR P cR,max then set cR = cR,max and repeat
(5)–(10).
6. Results and discussions

The two-dimensional problem shown in Fig. 1 is mod-
eled using the proposed total concentration approach.
Due to the symmetry of the problem about the y-axis, only
half of the domain is modeled as shown in Fig. 1b. For ease
of presentation, the following dimensionless variables are
defined.

X ¼ x=a ð23aÞ
Y ¼ y=a ð23bÞ
C ¼ c=c0 ð23cÞ
CR ¼ cR=c0 ð23dÞ
t� ¼ tD=a2 ð23eÞ

b ¼ mqSub

c0MSub

ð23fÞ

The non-dimensional width of the mask is taken as L1 =
l1/a = 6.5 and the dimensionless height of etchant is taken
as L3 = l3/a = 6.5. The width and thickness of the substrate
are taken as LSub = 1 + L1 = 7.5 and L2 = l2/a = 4.0
respectively. Results for two mask thicknesses namely, infi-
nitely thin and finite thickness are modeled. For infinitely
thin mask, the non-dimensional mask thickness is taken
as H = h/a = 0.005. Further decrease in mask thickness
does not alter the solution. For finite mask thickness,
the thickness of the mask is taken as one-fourth of the
gap width, i.e. H = h/a = 0.5. In Eq. (23f), b is the non-
dimensional etching parameter, which is a measure of the
etchfront speed for the given substrate to be etched. The
speed of the etchfront is inversely proportional to b. The
parameter b is also a measure of the initial etchant concen-
tration c0 for a given substrate to be etched. In general if
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Fig. 5. Etched profiles and concentration distribution for b = 100 and
infinitely thin mask: (a) comparison of etched profiles with existing
asymptotic solution and MG method, (b) concentration contours at
t* = 30.

Fig. 6. Etched profiles and concentration distribution for b = 10 and
infinitely thin mask: (a) comparison of etched profiles with the variational
inequality approach, (b) concentration contour at t* = 20.
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the initial etchant concentration is higher, the etch rate (the
etchfront speed) should be higher. It is clearly evident from
the definition of b as it is inversely proportional to the ini-
tial etchant concentration. So high initial etchant concen-
tration leads to lower value of b which leads to the faster
movement of the etchfront as mentioned above. The detail
study of the effect of b on the etchfront movement is dis-
cussed later in this article.

A grid refinement study was performed to ensure the
solutions are grid (temporal and spatial) independent.
Fig. 4 shows the evolution of etch profiles at four different
times for b = 100 and infinitely thin mask. Results from
these spatial grid resolutions are shown in Fig. 4. Three
control volume sizes are taken to carry out this test. For
each control volume size the time independent etch profiles
are shown. For the grid sizes of 32 · 29 and 72 · 53, the
time step size is Dt* = 0.01. For the 144 · 104 grid, the time
step size is Dt* = 0.001. It is seen that the grid sizes of
72 · 53 and 144 · 104 produced the same etch profile for
the four given times. As a result, 72 · 53 control volumes
with Dt* = 0.01 are used in this article.

Fig. 5a shows the comparisons of etch profiles at differ-
ent times between the FG method, the asymptotic solution
[6] and the MG [11] method. The non-dimensional etching
parameter is taken as b = 100. It is seen from Fig. 5a that
the present approach predicts the etch profiles at different
times accurately. Some bulging effect is seen near the corner
of the mask. The etching is faster near the corner region
compared to the region away from the corner. Fig. 5b
shows the concentration contours at t* = 30. It is seen that
the concentration contours have gone deep into the etched
region near the corner of the mask. Hence, the concentra-
tion gradient is higher near the mask region. As a result the
etching is faster in this region which results in bulging of
etch profiles. Fig. 6a shows the comparison of etch profiles
for b = 10. The etch profiles from the present approach
compare very well with the variational inequality approach
of Bruch et al. [8]. Fig. 6b shows the concentration contour
for b = 10 at t* = 20. It is seen that concentration contours
have gone deep at the center of the gap, which results in
enlarged bulging region from mask corner to the center
compared to the case with b = 100. This is because of the
high initial etchant concentration for b = 10, which results
in faster etch rate. The bulging effect is localized near the
mask corner region only at early time when b decreases
to 10 from 100.
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Fig. 7a shows the comparisons of the etch profiles
evolution for finite mask thickness. The non-dimensional
etching parameter is taken as b = 100. The etch profiles
obtained from the present approach compare well with
the MG solutions [11]. Fig. 7b shows the concentration
contour at t* = 126. It is seen that the concentration con-
tours in the etched region is nearly flat. As a result, the con-
centration gradient will also be nearly uniform. Hence
there is no significant bulging effect seen unlike the case
with infinitely thin mask. Fig. 8 shows the etch profiles
obtained with both mask thicknesses. It is seen that the
bulging effects reduces with mask thickness. It is because
of the larger diffusion length of the etchant from the area
above the inert mask to the etching surface. Hence fresh
etchant is less readily available near the mask corner as
thickness of the mask increases which results in slow etch
rate near the mask corner.

The effects of the initial etchant concentrations on etch
profile evolutions at a given time are shown in Fig. 9.
For a given substrate to be etched the initial etchant con-
centration is varied by varying the non-dimensional etching
parameter b (Eq. (23f)). The initial etchant concentration is
inversely proportional to b. For this test study, three values
of b namely, 1, 10 and 100 are chosen. The mask is taken as
infinitely thin. Fig. 9 shows the etch profiles for three b val-
ues at t* = 20. It is seen that as b decreases, the initial etch-
ant concentration increases. Therefore the etchdepth
increases as b decreases.
Fig. 7. Etched profiles and concentration distribution for b = 100 and
finite mask thickness (H = 0.5): (a) comparison of etched profiles with
MG method, (b) concentration contour at t* = 126.
7. Concluding remarks

A new fixed-grid method based on the total-concentra-
tion of etchant has been presented for two-dimensional
WCE. The proposed method is analogous to the enthalpy
method used in the modeling of melting/solidification
processes. A detailed formulation based on the total con-
centration of the etchant is presented. In the proposed
approach the governing equation includes the interface
condition. With this proposed method there is no necessity
for computing the etchfront position explicitly. The
method has been applied to two-dimensional diffusion-
controlled etching. For demonstration purposes, the
finite-volume method is used to discretize the governing
equation. The results from the present approach are com-
pared with the results from other existing methods. The
results show that the etchfront profile can be predicted
accurately using the proposed method.
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